Linear codes with covering radius R = 2, 3 and codimension tR

نویسندگان

  • Alexander A. Davydov
  • Patric R. J. Östergård
چکیده

Let [ ] denote a linear code over with length , codimension , and covering radius . We use a modification of constructions of [2 +1 2 3] 2 and [3 +1 3 5] 3 codes ( 5) to produce infinite families of good codes with covering radius 2 and 3 and codimension .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Bounds for Linear Codes of Covering Radius 2

The length function lq(r,R) is the smallest length of a q-ary linear code of covering radius R and codimension r. New upper bounds on lq(r, 2) are obtained for odd r ≥ 3. In particular, using the one-to-one correspondence between linear codes of covering radius 2 and saturating sets in the projective planes over finite fields, we prove that

متن کامل

Linear codes with covering radius 3

The shortest possible length of a q-ary linear code of covering radius R and codimension r is called the length function and is denoted by q(r, R). Constructions of codes with covering radius 3 are here developed, which improve best known upper bounds on q(r, 3). General constructions are given and upper bounds on q(r, 3) for q = 3, 4, 5, 7 and r ≤ 24 are tabulated.

متن کامل

New Linear Codes with Covering Radius 2 and Odd Basis

On the way of generalizing recent results by Cock and the second author, it is shown that when the basis q is odd, BCH codes can be lengthened to obtain new codes with covering radius R = 2. These constructions (together with a lengthening construction by the first author) give new infinite families of linear covering codes with codimension r = 2k + 1 (the case q = 3, r = 4k + 1 was considered ...

متن کامل

New Quaternary Linear Codes with Covering Radius 21

A new quaternary linear code of length 19, codimension 5, and covering radius 2 is found in a computer search using tabu search, a local search heuristic. Starting from this code, which has some useful partitioning properties, di!erent lengthening constructions are applied to get an in"nite family of new, record-breaking quaternary codes of covering radius 2 and odd codimension. An algebraic co...

متن کامل

Constructions and families of covering codes and saturated sets of points in projective geometry

In a recent paper by this author, constructions of linear binary covering codes are considered. In this work, constructions and techniques of the earlier paper are developed and modified for q-ary linear nonbinary covering codes, q 2 3, and new constructions are proposed. The described constructions design an infinite family of codes with covering radius R based on a starting code of the same c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2001